Aluminum Industry and Climate Change:

Assessment and Responses

Dr. Subodh Das

Dr. John Green

TMS Annual Meeting San Francisco, CA February 17, 2009

Outline

- Impact of Aluminum Industry on Greenhouse Gases
- Industry Response
 - # 1 Implement Process Improvements
 - # 2 Promote Aluminum Uses in Transportation
 - #3 Develop Recycle Friendly Aluminum Alloys
 - #4 Increase Recycling Rates
 - #5 Qualify Carbon Trading / Offsets

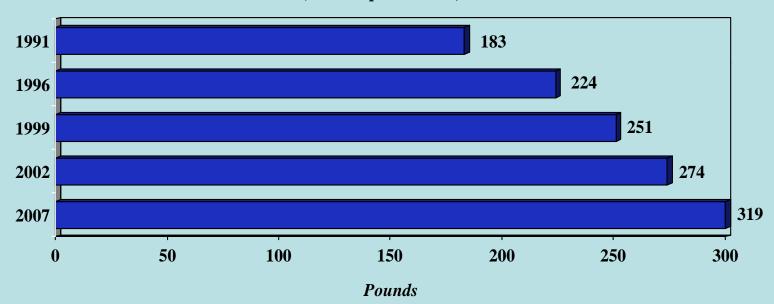
Impact of Global Aluminum Industry on Greenhouse Gases

- Aluminum is responsible for 1% of global human induced greenhouse gases (Carbon Dioxide and Perfluoro Carbons)
- 1 kg Perfluoro Carbons (PFC) is equivalent to 6500 kg CO₂
- About 32 million metric tonnes primary aluminum production worldwide
- Carbon Dioxide (CO₂)
 - 15.6 kg CO₂ per kg of aluminum production
 - Mining, refining, anode, electrolysis, and electric power generation
 - 453.8 billion metric tonnes CO₂ per year for worldwide production
- Perfluoro Carbons (PFC)
 - 1.0 kg PFC per tonne of aluminum production
 - 32 thousand metric tonnes PFC per year for worldwide production
 - Equivalent to 208 million metric tonnes of CO₂

Industry Response #1 Implement Process Improvements

- Produce Electricity Efficiently
 - Use electricity from efficient coal/oil/natural gas power plants
 - Use renewable energy sources
 - Hydro (current world use ~50%), Geothermal, and Nuclear
- Enhance process efficiency in existing plants and develop new technology
 - Replace rotary with fluid bed calciners
 - Reduce electricity needed to make aluminum from 7 to 6 kWh /pound
 - Lower smelting energy consumption
 - Wettable / drained cathode
 - Lower carbon anode effect frequency (reduce PFC)
 - Lower carbon consumption
 - Inert anode
 - More efficient vertical electrode cell
 - Develop non-contact sensors

Industry Response #2 Promote Aluminum Uses in Transportation


- Light weighting in aircraft, rail, shipping and especially cars and trucks saves fuel, and reduces CO₂ emissions
- Each pound of AI replacing iron or steel saves 20 pounds of CO₂ emissions over an average vehicle lifetime
- Fuel savings of 6-8% can be gained for every 10% weight reduction of a vehicle, resulting in less GHG emissions
- EPA estimates ~90% of automotive aluminum is recovered and recycled

North American Light Vehicle Aluminum Content Changes

North American Total Aluminum Content

(Pounds per Vehicle)

Industry Response #3 Develop Recycle Friendly Aluminum Alloys

Existing Model

"Primary World"

New Model

"Recycling World"

Recycling Driving Changes in Alloy Development

- Previous approach to alloy development
 - Driven solely by desired performance
 - Limited considerations of end-of-product-life
 - Less considerations for cost, carbon footprint and availability of alloying elements
- Beginning to recognize impact of recycling
 - How will product be recovered for recycling?
 - How will composition impact cost & recyclability?
 - What will be it's carbon footprint?

New Paradigm for Evaluation of Existing and Designing of New Alloys

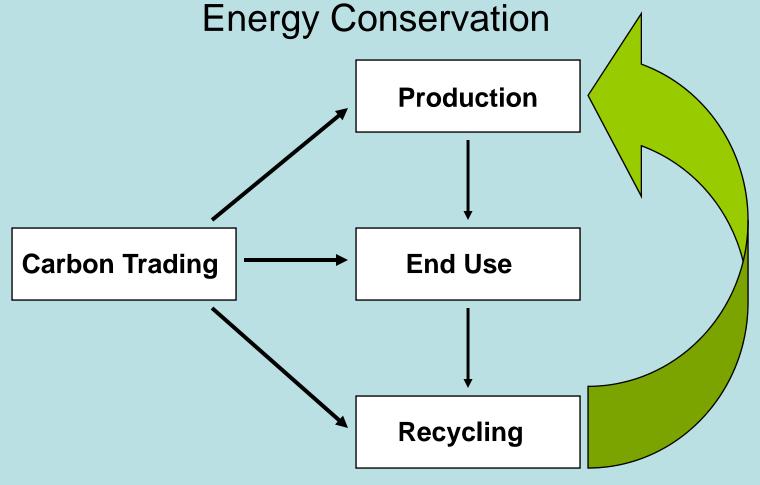
- For both existing and new alloys --- Recycle to same product
- For existing alloys:
 - Recognize relative value when recycled
 - How big are energy source and carbon footprint?
 - Consider how best to group alloys for remelting to maximize value of remelt composition?
- For designing new alloys
 - Consider how useful composition will be when remelted
 - Avoid adding elements that become contaminants
 - Consider direct production from recycle remelts
 - Avoid tight impurity limits
 - Consider alloys from automotive, B&C, packaging or aircraft recycling scrap streams

Aluminium Recycle Index (ARI)

- Concept Introduction and Definition:
 - ARI is a measure of the relative ease, value, and desirability of recycling & remelting alloys in endof-life products
 - Includes potential for recycling back to the same product or to another high-value product with minimal primary additions
 - ARI is a measure of the energy content and carbon footprint

Industry Response # 4 Increase Recycling Rates

- Enhance aluminum melting efficiency (average 25 %)
- Implement new recycling/sorting technologies
- Increase UBC recycling rate to new industry goal of 75 % by 2015
- Consider consumer behavior, convenience and economic incentives
- Consider urban mining of Used Beverage Cans (UBCs)
 - US recycling rate ~ 50% (Brazil, Norway ~ 96%)
 - Accumulated landfill totals 20 million tons in the US
 - Total value of "urban mine" is \$50 billion in the US
 - New landfill equals outputs of 3 aluminum smelters (~900,000 tonnes per year in the US)



- Recycling lowers energy & carbon footprint
 - Requires 5% of energy: 2.3 vs. 45 kWh/kg
 - Emits 5% of carbon dioxide : 0.6 vs. 12 kg/kg Al
 - Alloying Elements Conservation (Mg, Mn , Cu , Zn, Si)
 - Have high energy and carbon footprints

Industry Response # 5
Qualify Carbon Trading / Offsets for Recycling and

Thank You

For further discussion, please contact
Dr. Subodh Das
skdas@phinix.net
(859) 619-8386

