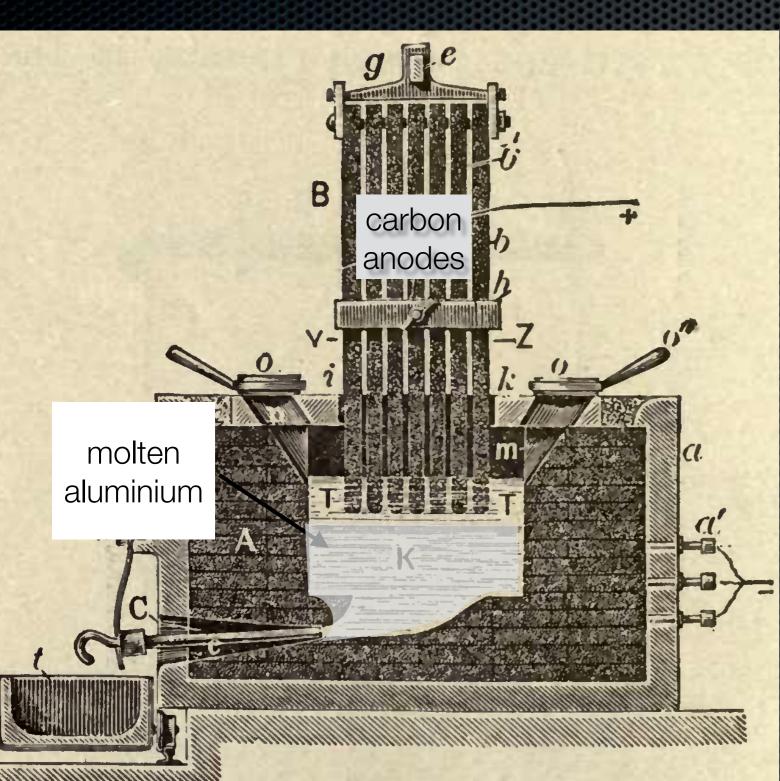
"Carbon-Free Technology : Implications for Steel and Aluminum"


Dr. Antoine Allanore – Massachusetts Institute of Technology Dr. Subodh Das, Phinix, LLC

18th Annual Jacobs Consultancy Petcoke Conference

San Antonio , Texas March 9, 2019

Aluminium by electrolysis

Using electricity and carbon since 1886

2Al₂O₃ + 3C = 4Al(l)+3CO₂(g) C as a fuel e- as a reductant ➡ Hall-Héroult

Global Metal Industry Carbon Foot Print (2018)

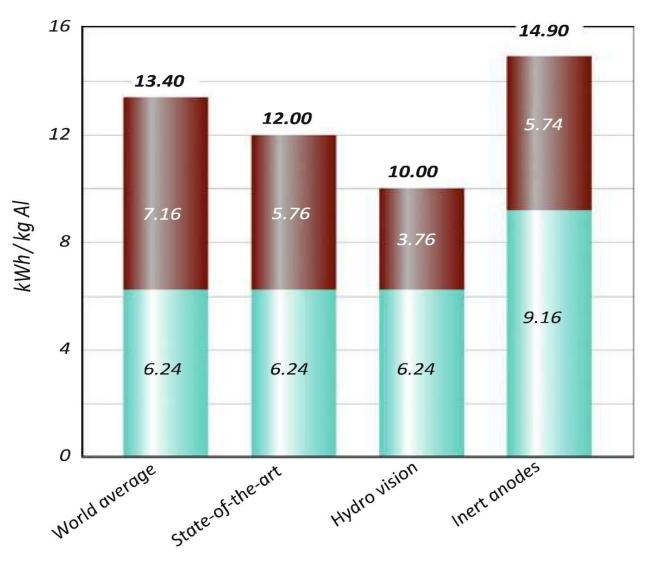
Metals	World Production (MMT)	CO _{2eq} (MT/MT)	% Global GHG
Iron & Steel	1,809	1.0	4-5
Aluminum	64.4	12	1-2
Copper	20	5.5	<1
Zinc*	10	3	<<1
Magnesium*	1	>18	<<1
Titanium*	0.1	>20	<<1

Source : Das, Allanore * estimated

Alternative Aluminum Production Routes

Processes	t CO _{2ea} /t Al	Change
Average Hall- Héroult (H-H)	12	Base
Best H-H	10	-15%
Wetted drained cathode	9	-25%
Wetted cathode and inert anode	8	-33%
Carbothermic electric furnace	8	-33%
Clay carbochlorination & chloride electrolysis	8	-33%

Source : Das, JOM


Hall-Héroult CO_{2eq} Emissions

			<u>_</u>			
	kg CO _{2eq} / tonne Al					
Emissions	Mining	Refining	Anode	Smelting	Casting	Total
Process			388	1,626		2,014
Electricity		58	63	5,801*	77	5,999
Fossil Fuel	16	789	135	133	155	1,228
Transport	32	61	8	4	136	241
Auxiliary		84	255			339
Per Fluoro- Carbons (PFC)				2,226		2,226
Total	48	992	849	9,790	368	(12,047**

Source : Das, JOM *Average Grid ** 12 t CO2eq /t Al

Energy Consumption – Competing H-H Processes

Theoretical

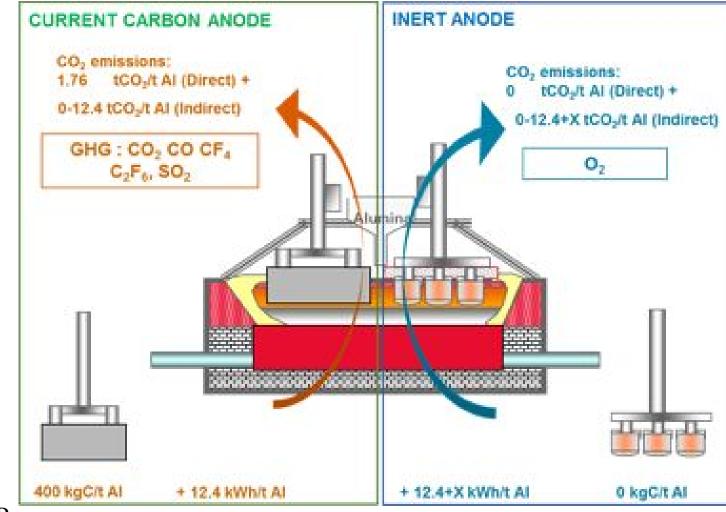
Source : LMA (2019)

Technology Terminology Description

Phrase	Implications	Focus
Oxygen Anode	Pure oxygen released	Aspirational Utopian
Zero- Carbon -Free	No C / energy required	Marketing/ Societal
Inert/Non-Consumable Dimensionally Stable	Zero anode dissolution	Technical
Low Carbon-footprint	Lower GHG processes	Most appropriate

Source : Das

Advantages of Low C-footprint Process



Reduced Carbon Footprint Carbon Dioxide PerFluoroCarbon (PFC) Salable Product - Oxygen Better Work Environment

Source : Image - LMA

Carbon Vs. Low C-footprint Process

Source : Image - AGRAL Process

Barriers, Challenges and Solutions

Barriers	Challenges	Solutions
High Temperature Fluoride Corrosion	"universal solvent", dissolves alumina	"long lasting" Material Miracle
High Conductivity Lower "theoretical" kWh/kg	IR Losses 500 kA Heat Balance	Lower resistivity Innovative Design
Thermal Shock	C high thermal shock	Innovative Cell Designs
Physical Stability Retrofittable/Cost	Carbon - "cheap", abundant	Innovative Design, Low Cost
Electrochemical Stability	Al Reactive	Dissolved elements more acceptable

Source : Modified by Das from Sadoway (JOM 2001)

Notable Efforts

- Has been a "dream" since H-H process in 1886
- Aluisuisse (now RTA) Tin Oxide (1970)
- DeNora Chlorine DSA Fame (1970)
- Alcan/Pechiney Oxide Ceramics /Cermets (1980)
- Alcoa Metals/Oxide Cermets (1980)
- US DOE/Alcoa Retrofittable concepts (2010)
- •Rusal (2016)
- Elysis RTA/Alcoa/Apple/Quebec (2018)

Source : Das

Commercialization – Brownfield

POSITIVE	NEGATIVE	OUTLOOK
Sunk Capital	China > 50 % world	1-3 years
	capacity	for Pot Rebuilds
Existing Infrastructure	"Old" technology	4 -6 years
	fights	for Line Restarts
Swing Capacity "Life	Alcoa /RTA/Hydro	7 -10 years
Line"	marketing low C Al	for Plant Conversions
Low C Products	Elysis/RUSAL	> 10 years
Markets	Licensing terms	for wide spread use

Commercialization – Greenfield

POSITIVE	NEGATIVE	OUTLOOK
"Leap Frog" – New "Material Science" Age	Many develops. needed "theoretical" kWh/kg	1-3 years R&D
Elysis -"Apple Magic" Alcoa/RTA "dream" team	IP, Financing \$ New Capacity Location /	4 - 6 years Limited
"Green" Products	Will customer pay	7-10 years Likely
New Capacity Demand	New technology Chloride/Carbothermic	> 10 years More Likely

